Artificial Intelligence atau AI merupakan cabang ilmu komputer yang bertujuan untuk membuat sebuah aplikasi yang mampu menirukan cara kerja otak manusia, dengan menerima input pengetahuan dari pakar dalam bentuk fakta – fakta, teori, prosedur dan aturan, untuk kemudian diterapkan dalam proses pemecahan masalah di berbagai bidang.
- Kecerdasan Buatan vs Kecerdasan Alami
Kelebihan kecerdasan buatan :
- Lebih permanen.
- Memberikan kemudahan dalam duplikasi dan penyebaran.
- Relatif lebih murah dari kecerdasan alamiah.
- Konsisten dan teliti.
- Dapat didokumentasi.
- Dapat mengerjakan beberapa task lebih cepat dan lebih baik dibanding manusia.
Kelebihan kecerdasan alami :
- Bersifat lebih kreatif.
- Dapat melakukan proses pembelajaran secara langsung, sementara AI harus mendapatkan masukan berupa symbol dan representasi.
- Fokus yang luas sebagai referensi untuk pengambilan keputusan, sebaliknya AI menggunakan fokus yang sempit.
- Sejarah Kecerdasan Buatan
- Cikal Bakal Kecerdasan Buatan (1943 – 1955)
- Lahirnya Kecerdasan Buatan (1956)
- Awal Perkembangan Kecerdasan Buatan (1952-1969)
- Perkembangan Kecerdasan Buatan Mulai Melambat (1966-1974)
- Sistem Berbasis Pengetahuan (1969-1979)
- Kecerdasan Buatan Menjadi Sebuah Industri (1980-1988)
- Kembalinya Jaringan Syaraf Tiruan (1986 – sekarang)
- Konsep Dasar Artificial Intelligence
- Acting Humanly : Pendekatan Uji Turing
- Thinking Humanly : Pendekatan Model Kognitif
- Thinking Rationally : The Laws of Thought Approach
- Acting Rationally : The Rational Agent Approach
- Disiplin Ilmu Artificial Intelligence
- Natural Languange Processing (NLP)
- Expert System (ES)
- Pattern Recognition (PR)
- Robotic
B. PEMROSESAN BAHASA ALAMI
Dua alasan utama mengapa agen komputer kita ingin dapat memproses bahasa alami: untuk berkomunikasi dengan manusia dan untuk memperoleh informasi dari bahasa tertulis. Faktor umum dalam menangani tugas-tugas ini adalah penggunaan model bahasa: model yang memprediksi distribusi probabilitas dari ekspresi bahasa.
- Model Bahasa
Bahasa pemrograman seperti Java atau Python, telah tepat mendefinisikan model bahasa. Model bahasa kita adalah sebuah perkiraan.
- Model karakter N-gram
Sebuah teks tertulis terdiri dari karakter. Dengan demikian, salah satu model bahasa yang paling sederhana adalah distribusi probabilitas atas urutan karakter. Salah satu tugas model karakter n-gram adalah identifikasi bahasa.
- Merapikan Model n-gram
Komplikasi utama dari model n-gram yaitu corpus pelatihan hanya menyediakan perkiraan distribusi probabilitas benar.
- Evaluasi Model
Bagaimana kita tahu untuk memilih model apa? Kita dapat mengevaluasi model dengan cross-validasi. Membagi korpus menjadi korpus pelatihan dan korpus validasi.
- Model kata N-gram
Semua mekanisme yang sama berlaku sama untuk model kata dan karakter. Model kata n-gram perlu berurusan dengan kosa kata. Tapi dengan model kata selalu ada kesempatan untuk sebuah kata baru yang tidak dilihat dalam pelatihan korpus
- Klasifikasi Teks
Klasifikasi teks juga dikenal sebagai kategorisasi. Identifikasi bahasa dan klasifikasi genre adalah contoh dari klasifikasi teks, seperti analisis sentiment dan deteksi spam.
- Klasifikasi oleh kompresi data
Sebuah algoritma kompresi lossless mengambil urutan simbol, mendeteksi pola yang diulang di dalamnya, dan menulis deskripsi dari urutan yang lebih padat daripada yang asli.
- Pengambilan Informasi
Pengambilan informasi (IR) merupakan pencarian informasi berupa dokumen-dokumen yang relevan dengan kebutuhan pengguna informasi sehingga dapat memenuhi keinginan user.
- Fungsi Penilaian IR
Fungsi penilaian atau Scroing Function berasal dari proyek Okapi Stephen Robertson dan Karen Sparck Jones di London City College yang telah digunakan dalam mesin pencarian atau search engine.
- Sistem Evaluasi IR
Sistem evaluasi IR mengevaluasi apakah sebuah system IR bekerja dengan baik atau tidak, dengan menerjemahkan kebutuhan informasi kedalam kueri. Didalam evaluasi IR ini terdapat 3 level pengukuran yaitu pemrosesan, pencarian, dan kepuasan pemakai.
- Penyempurnaan IR
Sebagai penyempurnaan akhir, IR dapat ditingkatkan dengan mempertimbangkan metadata-data di luar teks dokumen.
- Algoritma PageRank
PageRank adalah salah satu ide – ide asli dua yang mengatur pencarian google dari mesin telusuri Web lain ketika diperkenalkan pada tahun 1997.
PageRank untuk halaman p didefinisikan sebagai:
+
- The HITS algorithm ( Algoritma HITS )
Algoritma HITS (Hyperlink-Induced Topic Search algorithm), juga dikenal sebagai “Hub dan Otoritas”, merupakan algoritma link-analisis berpengaruh lainnya.
- Question answering
Sistem Question answering NLP ( pengolahan bahasa alami ) telah ada sejak 1960-an, namun barulah sejak 2001 sistem tersebut menggunakan pencarian informasi Web untuk meningkatkan cangkupan mereka secara radikal.
- Information Extraction
Information extraction adalah proses memperoleh pengetahuan dengan membaca sekilas teks dan mencari kejadian dari kelas objek dan hubungan antara objek – objek. Tugasnya adalah untuk mengesktrak contoh alamat dari halaman Web.
Referensi : Abraham, David., Permana, Indra W., Nugraha, Rangga A., Alvian, Moch. & Hanif, 2015. Penyelesaian Masalah 8-Puzzle dengan Algoritma Steepest-Ascent Hill Climbing, [online], (http://jurnal.untirta.ac.id/index.php/jis/article/download/465/354, diakses pada 27 September 2016).
Referensi : Desiani, Anita & Arhami, Muhammad, 2006. Konsep Kecerdasan Buatan. Yogyakarta : Penerbit Andi Offset.
Referensi :Russell, Stuart & Norvig, Peter, 2003. Artificial Intelligence, A Modern Approach, [online], (http://xgxy.cug.edu.cn/rjgcx/lzw/AI/AIMA-Second-Edition.pdf, diakses pada 9 Oktober 2016).
Referensi : Desiani, Anita & Arhami, Muhammad, 2006. Konsep Kecerdasan Buatan. Yogyakarta : Penerbit Andi Offset.
Referensi :Suparman, 1991. Mengenal Artificial Intelligence. Yogyakarta: Penerbit Andi Offset.